Density ratio model for multivariate outcomes
نویسندگان
چکیده
منابع مشابه
Likelihood Ratio Tests in Multivariate Linear Model
The aim of this paper is to review likelihood ratio test procedures in multivariate linear models, focusing on projection matrices. It is noted that the projection matrices to the spaces spanned by mean vectors in hypothesis and alternatives play an important role. Some basic properties are given for projection matrices. The models treated include multivariate regression model, discriminant ana...
متن کاملOutcomes of High-Risk Pregnancies in Northern Iran: Multivariate Logistic Regression Model
Abstract Background and purpose: High-risk pregnancy is referred to a situation in which mother, fetus or neonate are in higher risk of morbidity or mortality. Because of adverse outcomes of high-risk pregnancies, this study aims to determine these outcomes in the North of Iran. Materials and Methods: We recruited 803 urban and rural pregnant women in this crosssectional ...
متن کاملMaximum likelihood estimation for semiparametric density ratio model.
In the statistical literature, the conditional density model specification is commonly used to study regression effects. One attractive model is the semiparametric density ratio model, under which the conditional density function is the product of an unknown baseline density function and a known parametric function containing the covariate information. This model has a natural connection with g...
متن کاملMultivariate Density Modeling for Retirement Finance
Prior to the financial crisis mortgage securitization models increased in sophistication as did products built to insure against losses. Layers of complexity formed upon a foundation that could not support it and as the foundation crumbled the housing market followed. That foundation was the Gaussian copula which failed to correctly model failure-time correlations of derivative securities in du...
متن کاملFeature significance for multivariate kernel density estimation
Multivariate kernel density estimation provides information about structure in data. Feature significance is a technique for deciding whether features – such as local extrema – are statistically significant. This paper proposes a framework for feature significance in d-dimensional data which combines kernel density derivative estimators and hypothesis tests for modal regions. For the gradient a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Multivariate Analysis
سال: 2017
ISSN: 0047-259X
DOI: 10.1016/j.jmva.2016.11.008