Density ratio model for multivariate outcomes

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Likelihood Ratio Tests in Multivariate Linear Model

The aim of this paper is to review likelihood ratio test procedures in multivariate linear models, focusing on projection matrices. It is noted that the projection matrices to the spaces spanned by mean vectors in hypothesis and alternatives play an important role. Some basic properties are given for projection matrices. The models treated include multivariate regression model, discriminant ana...

متن کامل

Outcomes of High-Risk Pregnancies in Northern Iran: Multivariate Logistic Regression Model

Abstract Background and purpose: High-risk pregnancy is referred to a situation in which mother, fetus or neonate are in higher risk of morbidity or mortality. Because of adverse outcomes of high-risk pregnancies, this study aims to determine these outcomes in the North of Iran.  Materials and Methods: We recruited 803 urban and rural pregnant women in this crosssectional ...

متن کامل

Maximum likelihood estimation for semiparametric density ratio model.

In the statistical literature, the conditional density model specification is commonly used to study regression effects. One attractive model is the semiparametric density ratio model, under which the conditional density function is the product of an unknown baseline density function and a known parametric function containing the covariate information. This model has a natural connection with g...

متن کامل

Multivariate Density Modeling for Retirement Finance

Prior to the financial crisis mortgage securitization models increased in sophistication as did products built to insure against losses. Layers of complexity formed upon a foundation that could not support it and as the foundation crumbled the housing market followed. That foundation was the Gaussian copula which failed to correctly model failure-time correlations of derivative securities in du...

متن کامل

Feature significance for multivariate kernel density estimation

Multivariate kernel density estimation provides information about structure in data. Feature significance is a technique for deciding whether features – such as local extrema – are statistically significant. This paper proposes a framework for feature significance in d-dimensional data which combines kernel density derivative estimators and hypothesis tests for modal regions. For the gradient a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Multivariate Analysis

سال: 2017

ISSN: 0047-259X

DOI: 10.1016/j.jmva.2016.11.008